Structured thermal armor achieves liquid cooling above 1,000°C and solves challenge presented by Leidenfrost effect

2022-09-24 01:59:47 By : Mr. Tim Wang

Click here to sign in with or

by City University of Hong Kong

A research team led by scientists from City University of Hong Kong (CityU) has recently designed a structured thermal armor (STA) that achieves efficient liquid cooling even over 1,000°C, fundamentally solving a 266-year-old challenge presented by the Leidenfrost effect. This breakthrough can be applied in aero and space engines, as well as improve the safety and reliability of next-generation nuclear reactors.

The research has been led by Professor Wang Zuankai from CityU's Department of Mechanical Engineering (MNE), Professor David Quéré from the PSL Research University, France, and Professor Yu Jihong, Director of the International Center of Future Science, Jilin University and Senior Fellow of the Hong Kong Institute for Advanced Study at CityU.

The findings were published in the latest issue of the highly prestigious scientific journal Nature.

The Leidenfrost effect is a physical phenomenon discovered in 1756, which refers to the levitation of drops on a surface that is significantly hotter than the liquid's boiling point. It produces an insulating vapor layer and dramatically reduces heat transfer performances at high temperatures, which makes liquid cooling on the hot surface ineffective. This effect is most often detrimental and it has remained a historic challenge to suppress this effect.

The CityU-led team constructed a multitextured material with key elements that have contrasting thermal and geometrical properties. The rational design for the STA superimposes robust, conductive, protruding pillars that serve as thermal bridges for promoting heat transfer; an embedded thermally insulating membrane designed to suck and evaporate the liquid; and underground U-shaped channels that evacuate the vapor. It successfully inhibits the occurrence of the Leidenfrost effect up to 1,150 °C and achieves efficient and controllable cooling across the temperature range from 100°C to over 1,150°C.

"This multidisciplinary research project is truly a breakthrough in science and engineering, since it mixes surface science, hydro- and aero-dynamics, thermal cooling, material science, physics, energy and engineering. Searching for novel strategies to address the liquid cooling of high-temperature surfaces has been one of the holy grails in thermal engineering since 1756. We are fortunate to fundamentally suppress the occurrence of the Leidenfrost effect and thereby provide a paradigm shift in liquid thermal cooling at extremely high temperatures, a mission that has remained uncharted to date," said Professor Wang.

Professor Wang pointed out that current thermal cooling strategies under extremely high temperatures adopt air cooling measures rather than effective liquid cooling owing to the occurrence of the Leidenfrost effect, especially for applications in aero and space engines and next-generation nuclear reactors.

"The designed STA can be fabricated to be flexible, eliminating the need for additional manufacturing, especially for those surfaces that are hard to be textured directly. This is why the STA possesses huge potential for practical applications," added Professor Wang.  Explore further Using ice to boil water: Researcher makes heat transfer discovery that expands on 18th century principle More information: Zuankai Wang, Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling, Nature (2022). DOI: 10.1038/s41586-021-04307-3. www.nature.com/articles/s41586-021-04307-3 Journal information: Nature

Provided by City University of Hong Kong Citation: Structured thermal armor achieves liquid cooling above 1,000°C and solves challenge presented by Leidenfrost effect (2022, January 26) retrieved 23 September 2022 from https://phys.org/news/2022-01-thermal-armor-liquid-cooling-1000c.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Other Physics Topics

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.